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Abstract

Neuronal modeling of patch-clamp data is based on approximations which are valid under specific assumptions regarding cell

properties and morphology. Certain cells, which show a biexponential capacitance transient decay, can be modeled with a two-

compartment model. However, for parameter-extraction in such a model, approximations are required regarding the relative sizes of

the various model parameters. These approximations apply to certain cell types or experimental conditions and are not valid in the

general case. In this paper, we present a general method for the extraction of the parameters in a two-compartment model without

assumptions regarding the relative size of the parameters. All the passive electrical parameters of the two-compartment model are

derived in terms of the available experimental data. The experimental data is obtained from a DC measurement (where the

command potential is a hyperpolarizing DC voltage) and an AC measurement (where the command potential is a sinusoidal

stimulus on a hyperpolarized DC potential) performed on the cell under test. Computer simulations are performed with a circuit

simulator, XSPICE, to observe the effects of varying the two-compartment model parameters on the capacitive transients of the

current response. Our general solution for the parameter-estimation of a two-compartment model may be used to model any

neuron, which has a biexponential capacitive current decay. In addition, our model avoids the need for simplifying and perhaps

erroneous approximations. Our equations may be easily implemented in hardware/software compensation schemes to correct the

recorded currents for any series resistance or capacitive transient errors. Our general solution reduces to the results of previous

researchers under their approximations. # 2002 Elsevier Science B.V. All rights reserved.
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Nomenclature

t single-compartment time constant (s)
tO CDRCRD/(RC�/RD) (s)

t1 [(1/CD)(1/RM�/1/RC�/1/RS)]�1 (s)

t2 see Eq. (14) (s)
t3 two-compartment time constant (slow) (s)
t4 two-compartment time constant (fast) (s)
RS pipette resistance (ohm)
RM resistance of compartment M (ohm)
CM capacitance of compartment M (farad)
RD resistance of compartment D (ohm)
CD capacitance of compartment D (farad)
RC resistance connecting compartments M and D (ohm)
VO command potential (volts)
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1. Introduction

In most electrophysiological studies, whole-cell vol-

tage-clamp techniques are an established method to

measure ionic currents from single cells. An ideal

voltage clamp has two functions: first, it imposes a

command potential on the membrane such that the cell

membrane potential is equal to the command potential

and second, it measures the ionic current. In reality,

there is considerable resistance to the flow of current

through the pipette to the cytoplasm. As a result of this

current flow, the membrane potential is not equal to the

applied command potential. The signal response time

(time constant) is essentially a function of the pipette

resistance, the membrane resistance and capacitance. An

estimation of these electrical components is needed to

compensate for the series resistance and capacitive

transient errors in a voltage-clamp experiment.

Compartmental models are often used to represent a

cell’s passive electrical properties, which provide a useful

insight into the different cell conduction mechanisms. In

the simplest case, a single-compartment model (Fig. 1)

can be used to represent the electrical characteristics of

small cells (longest dimension B/100 mm). Here, the

capacitive transient of the current response to a hyper-

polarized voltage step (i.e. a negative step voltage

relative to the intracellular medium) has a single-

exponential decay time constant. Also, the membrane

resistance is usually 50�/100 times larger than the pipette

resistance (5�/10 MV). As such, the method of para-

meter-estimation in a single-compartment model be-

comes quite trivial and, over time, numerous methods

have evolved for the extraction of these parameters. If

we assume the membrane resistance is much larger than

the pipette resistance, then all single-compartment

model parameters can be estimated within reasonable

accuracy (Sakmann and Neher, 1994). A more exact

method of parameter-estimation involves admittance

measurements (Lindau and Neher, 1988), where the

model parameters can be expressed in terms of the real

and imaginary components of the measured admittance.
Also, the dynamic changes in passive cellular character-

istics may be measured with phase-tracking techniques

(Fidler and Fernandez, 1989) or by other dual-frequency

measurement approaches (Donnelly, 1994). Computer

simulations have been performed by Sala et al. to

examine the sources of errors introduced by the single-

compartment model parameters in single-electrode vol-

tage-clamp experiments (Sala and Sala, 1994). Recently
a method, which employs planar pipettes in silicon, was

suggested to reduce noise sources in patch-clamping and

for high-throughput screening (Pandey and White,

2001).

A single-compartment model cannot describe some

cells. In neurons, such as the cerebellar Purkinje cells,

the capacitive current response to a hyperpolarizing

voltage pulse is a sum of two exponentials. These cells
can be modeled satisfactorily with a two-compartment

equivalent circuit. In a two-compartment model, the

equivalent electrical circuit consists of two main com-

partments (soma and proximal dendrites on the one

hand, distal dendrites on the other) connected by a

resistance. In hippocampal pyramidal cells, three ex-

ponentials are needed to model the capacitive decay. In

these instances, and many more complex cases, a cable
analysis may be more appropriate than a multi-com-

partment model (Koch and Segev, 1989). The cable

method for analyzing passive electrical data from

neurons consists of decomposing the voltage response

V1(t) potential at compartment M (volts)
V2(t) potential at compartment D (volts)
VP steady-state voltage component of V2(t) (s)

i1(t ) total input current through the pipette (ampere)
iSS steady-state component of i1(t) (ampere)

AO single-compartment exponential-decay coefficient (ampere)
A1 two-compartment current exponential-decay (slow) coefficient (ampere)
A2 two-compartment current exponential-decay (fast) coefficient (ampere)
j see Eq. (28) (s�2)
v operating frequency of the sinusoidal stimulus (radians/s)
Y (v ) single-compartment admittance at a frequency v (ohm�1)

AR(v ) real part of Y (v ) (ohm�1)

BR(v ) imaginary part of Y (v ) (ohm�1)

RTOTAL single-compartment thevenin equivalent resistance (ohm)
RTOT two-compartment thevenin equivalent resistance (ohm)
YTOT(v ) two-compartment admittance at a frequency v (ohm�1)

ZTOT(v ) two-compartment impedance at a frequency v (ohm)

a (v ) real part of YTOT(v ) (ohm�1)

b (v ) imaginary part of YTOT(v ) (ohm�1)
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of the cell into a series of exponential functions and

substituting the time constants of these exponential

functions into equations derived from cable theory

(Rall et al., 1992). As an alternative to this traditional

method of cable analysis, the method of ‘integrals of

transients’ has been employed to analyze the passive

electrical data from neurons (Engelhardt et al., 1998).
Yet, the simpler the compartmental model, the easier

it becomes to estimate its model parameters (Roth and

Hausser, 2001). Unfortunately, even in a two-compart-

ment model, some approximations need to be made to

simplify the model and thereby, ease the method of

parameter-extraction. Llano et al. (1991) employed a

two-compartment model to fit the capacitive transients

of the excitatory currents from Purkinje cells as a sum of

two exponentials. Llano et al. (1991) assumed the

resistances in the proximal and distal compartments

were very large compared with the other resistances in

the equivalent circuit. The biexponential decay of

capacitive transients from hippocampal cells was de-

scribed using a two-compartment model by Mennerick

et al. (1995) assuming the resistance of the distal

compartment is very large. In another work, a simplified

two-compartment model was used to extract the mem-

brane properties of bipolar neurons, assuming very high

resistances in the proximal and distal compartments

(Mennerick et al., 1997). A recent work compared the

various approximations made by previous authors while

using a two-compartment model, summarizing the

validity and limits of these approximations under

different conditions (Nadeau and Lester, 2000).

The reliability of any parameter-extraction technique

depends on the approximations made while extracting
the model parameters and on the validation of such

approximations for the given cell and the bandwidth of

operation. Compensation circuitry, either included in

the software/hardware of the patch-clamp setup, relies

on the accuracy of these parameter-extraction techni-

ques to compensate for the errors introduced by the

circuit resistance and capacitance (Traynelis, 1998). In

some cases, certain simplifying approximations regard-
ing the size of the model parameters can be justified. But

in other cases, especially when dealing with complex and

larger cells, a more exact model for the estimation of the

parameters is required. This points out the need for a

general method of parameter-estimation in a two-

compartment model, which is not subjected to over-

simplifying approximations.

In this work, we present an exact, analytical method
for the parameter-estimation of a two-compartment

model. All the passive electrical parameters of the two-

compartment model are derived based on the DC

measurements (where the command potential is a DC

hyperpolarizing voltage) and on AC measurements

(where the command potential is a sinusoidal stimulus

resting upon a DC hyperpolarizing voltage). Our

equations are compared to those derived by previous
authors and, under approximations used by these

authors, we obtain the same results. Computer simula-

tions are performed on a circuit simulator, XSPICE, to

demonstrate the contributions of varying each model

parameter on the capacitive transients of the current

response.

2. Single-compartment model (a review)

We assume a reasonably small cell (B/100 mm) with a

membrane resistance RM and a membrane capacitance

CM. The command voltage VO is applied to the cell

through a pipette with a series resistance of RS. Fig. 1

shows the electrical equivalent circuit of the small cell,

along with the voltage and current waveforms asso-

ciated with the circuit. This equivalent circuit represen-
tation of a small cell is often used with patch-clamp

techniques in electrophysiological experiments. We

assume the cell membrane is isopotential and there are

no voltage-dependent, active conductances. In small

cells, the typical values of the single-compartment model

parameters are RS�/10 MV, RM�/1 GV and CM�/15�/

100 pF. In such cases, the assumption of RM�/�/RS is

valid and simplifies the model. We will describe briefly
the standard equations of this single-compartment

model, estimating the model parameters by making the

assumption of RM�/�/RS. Next, we will review a more

Fig. 1. (A) A single-compartment model showing the passive electrical

equivalent circuit of a small cell. (B) The typical waveforms of the

command voltage VO and the recorded current i1(t ) versus time.
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accurate method for the estimation of the single-

compartment model parameters based on admittance

measurements with no simplifying assumptions. We will

extend this approach to a two-compartment model,
which will provide a technique for the extraction of the

two compartment model parameters. From Fig. 1(A),

we derive the equations

V1(t)�
VOt

RSCM

�
1�exp

�
�

t

t

��
(1)

where

t�CM

�
RMRS

RM � RS

�

is the circuit time constant and the current is

i1(t)�
VO

RS

�
1�

t

RSCM

�
�

VOt

R2
SCM

exp

�
�

t

t

�
(2)

The experimentally recorded current i1(t) has the form

i1(t)� iSS�AO exp(�t=t) (3)

where iSS is the steady state component of i1(t).

Comparing Eq. (1) and Eq. (3) we have

iSS�
VO

RS

�
1�

t

RSCM

�
and AO�

VOt

R2
SCM

(4)

With the assumption RM�/�/RS, the model parameters

can be written as (Sakmann and Neher, 1994)

RM�
VO

iSS

; RS�
VO

i1(0)
; CM�

t

RS

(5)

Computer simulations of the single-compartment

equivalent circuit are performed on XSPICE, a circuit

simulator. Fig. 2(A) shows the effect of varying the

series resistance on the capacitive transient of the
current i1(t) under the application of a 10 mV command

voltage step. The values of the model parameters are

chosen as RM�/100 MV, CM�/20 pF and RS�/2, 3.5

and 5 MV. We see the series resistance compensation is

increased (i.e. as RS is decreased), the time constant t

decreases and the value of i1(0) or AO increases

(according to Eq. (2)). In Fig. 2(B), the amplitude of

the command voltage step is varied and its effect on the
capacitive transient of the current i1(t) is observed. The

values of the model parameters are RM�/100 MV,

CM�/20 pF and RS�/2 MV. In Fig. 2(B), we observe

that even though the time constant is fixed (t�/39 ms),

the current i1(0) or AO increases with increasing

magnitude of the command voltage VO (according to

Eq. (2)).

We now review a method of parameter estimation for
a single-compartment model, which gives an exact

solution for the model parameters, without simplifying

assumptions (Lindau and Neher, 1988). In this techni-

que, a sinusoidal voltage stimulus resting upon a
hyperpolarized DC potential is applied as the command

voltage. The magnitude and phase-shift of the resulting

current sinusoid are analyzed with a phase-sensitive

detector to give the real and imaginary current compo-

nents. These current components divided by the stimu-

lus voltage amplitude give the real and imaginary

admittance values. Using this information, along with

the information from the measured DC current, all the
parameters of a single-compartment model can be

exactly determined.

From Fig. 1(A), the net admittance is

Y (v)�AR(v)� jBR(v)

�
(1 � v2RMRPC2

M) � jvR2
MCM

RT(1 � v2R2
PC2

M)
(6)

Fig. 2. (A) The effect of series resistance compensation on the

capacitive transient of the current i1(t ). The model parameters are

RM�/100 MV, CM�/20 pF and RS�/2, 3.5 and 5 MV. The fitting

parameters for the single-exponential decay of the capacitive transients

are: (a) for RS�/2 MV, t�/39 ms, AO�/4.9 nA, iSS�/0.098 nA; (b) for

RS�/3.5 MV, t�/68 ms, AO�/2.7 nA, iSS�/0.096 nA; (c) for RS�/5

MV, t�/96 ms, AO�/1.9 nA, iSS�/0.095 nA. (B) The effect of varying

the command step voltage VO on the capacitive transient of the current

i1(t ). The model parameters are RM�/100 MV, CM�/20 pF and RS�/

2 MV. The fitting parameters for the single-exponential decay of the

capacitive transients are: t�/39 ms (a) for VO�/�/10 mV, AO�/4.9 nA,

iSS�/0.098 nA; (b) for VO�/�/30 mV, AO�/14.7 nA, iSS�/0.29 nA; (c)

for VO�/�/60 mV, AO�/29.4 nA, iSS�/0.59 nA.
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where

RT�RM�RS�
VO

IDC

and RP�
RMRS

RM � RS

(7)

With the experimental values of RT, AR and BR, Eq. (6)

and Eq. (7) give the model parameters as

RS�
AR � R�1

T

A2
R � B2

R � ARR�1
T

;

RM�
RTf(AR � R�1

T )2 � B2
Rg

A2
R � B2

R � ARR�1
T

;

CM�
�

1

vCBR

�
(A2

R � B2
R � ARR�1

T )2

(AR � R�1
T )2 � B2

R

(8)

where fC�/vC/2p is the frequency of the applied

sinusoid.
To estimate the three parameters RS, RM and CM of

the single-compartment model, at least three equations

are needed. In the Lindau�/Neher technique, the admit-

tance measurement provides two equations and the DC

current measurement provides the third equation needed

to estimate all the model parameters. We use a similar

methodology in the parameter-extraction of the two-

compartment model. The current response i1(t) to a DC
command voltage, together with the admittance mea-

surements, will provide all the information needed to

exactly estimate all the six parameters of the two-

compartment model, as shown in the next section.

3. Two compartment model (DC measurements)

In this analysis, we assume a cell that can be modeled
by an electrical equivalent circuit shown in Fig. 3. The

DC step command voltage VO is applied to the cell

through a pipette with a series resistance RS. The actual

cell can be represented by two compartments: compart-

ment M (for the soma and proximal dendrites) and

compartment D (for the distal dendrites). A series

resistance RC connects the two compartments. Assum-

ing the pipette capacitance is fully compensated, the

following equations can be derived for the two-compart-

ment model:

i1�(VO�V1)=RS; i2�(V1�V2)=RC; i3�V1=RM;

i5�V2=RD; i4�CMdV1=dt; i6�CDdV2=dt;

i1� i2� i3� i4; i2� i5� i6

(9)

From the above set of equations, we obtain two first-
order differential equations

CM

dV1(t)

dt
�V1(t)

�
1

RM

�
1

RC

�
1

RS

�
�

V2(t)

RC

�
VO

RS

(10)

CD

dV2(t)

dt
�V2(t)

�
1

RC

�
1

RD

�
�

V1(t)

RC

(11)

Eliminating V1(t) from these two differential equations

gives a second-order non-homogeneous differential

equation in V2(t) as

d2V2(t)

dt2
�

dV2(t)

dt

�
1

tO

�
1

t1

�
�V2(t)

�
1

tOt1

�
1

CMCDR2
C

�

�
VO

CMCDRCRS

(12)

where

1

tO

�
1

CD

�
1

RC

�
1

RD

�

and
1

t1

�
1

CM

�
1

RM

�
1

RC

�
1

RS

�
(13)

The solution of such a differential equation is of the

form: V (t)�/c1 exp(�/t /t3)�/c2 exp(�/t /t4)�/VP, where

VP is the particular solution of the above differential

equation and the exponential terms are the solutions of

the homogeneous differential equation. The constants c1

and c2 can be determined from the given initial condi-

tions. For Eq. (12), the particular solution VP is

VP�
VORMt2

CD(RMRS � RMRC � RCRS)

where

t2�CD

�
1

RD

�
(RS � RM)

RMRS � RMRC � RCRS

��1

(14)

The homogeneous solution of the differential Eq. (12)

gives the two circuit time constants as

1

t3

�
�

1

tOt1

�
1

R2
CCMCD

�
=

�
1

tO

�
1

t1

�
(15)

1

t4

�
��

1

tO

�
1

t1

�2

�
�

1

tOt1

�
1

R2
CCMCD

��
=

�
�

1

tO

�
1

t1

�
(16)

Fig. 3. Two-compartment model showing the two compartments:

compartment M (for the soma and proximal dendrites) and compart-

ment D (for the distal dendrites) connected by a resistance RC. The

pipette resistance is RS and the command voltage stimulus is VO.
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We also have a relation between the two time constants

as

�
1

t4

�
1

t3

�
�

�
1

tO

�
1

t1

�
(17)

The initial conditions of V2(0)�/0 and V1(0)�/0 give the
general solutions of V1(t ) and V2(t) as

V2(t)�
�

VORMt2

CD(RMRC � RMRS � RCRS)

�

�
�

1�
�

t3

t4 � t3

�
exp

�
�

t

t3

�

�
�

t4

t4 � t3

�
exp

�
�

t

t4

��
(18)

V1(t)�
�

VORMRCt2

tO(RMRC � RMRS � RCRS)

�

�
�

1�
�
t3 � tO

t4 � t3

�
exp

�
�

t

t3

�

�
�
t4 � tO

t4 � t3

�
exp

�
�

t

t4

��
(19)

In the approximation of CM�/0 (Nadeau and Lester,

2000), we observe the time constants in Eq. (15) and Eq.

(16) reduce to t3�/t2 and t4�/0. If we place the values

of these time constants into Eq. (18), then we will have

the same result obtained by Nadeau and Lester (2000).

The next section will provide additional validation of
the above set of equations for the two-compartment

model. Now, the experimentally recorded current i1(t)

has the form

i1(t)� iSS�A1 exp

�
�

t

t3

�
�A2 exp

�
�

t

t4

�
(20)

where iSS is the steady-state current component of i1(t),

while t3 (slow) and t4 (fast) are the two time constants of

the biexponential capacitive transient. Fitting the ex-

perimental plot of i1(t ) with Eq. (20) will provide the
values of all the equation unknowns (iSS, t3, t4, A1, A2).

From the experimental plot of i1(t), the following

parameters can be determined:

RTOT�
VO

iSS

; RS�
VO

i1(0)
�

VO

A1 � A2 � iSS

;

CM��
VO

R2
S(di1(0)=dt)

�
t3t4(A1 � A2 � iSS)2

VO(A1t4 � A2t3)

(21)

Eq. (21) allows us to estimate the parameters RS and CM

from the known values of the current parameters (iSS, t3,

t4, A1, A2) in Eq. (20). Also, from Fig. 3 and Eq. (21),

RM can be expressed in terms of RTOT, RS, RC and RD as

1

RTOT � RS

�
1

RM

�
1

RC � RD

�
iSS(A1 � A2 � iSS)

VO(A1 � A2)
(22)

Using the form of i1(t ) from Eq. (20), the voltage V1(t)

can be expressed as

V1(t)�VO�RS

�
iSS�A1 exp

�
�

t

t3

�

�A2 exp

�
�

t

t4

��
(23)

Comparing the two forms of voltage V1(t ) from Eq. (19)

and Eq. (23) gives the values of tO, t1 and t2 in terms of

the known parameters as

tO�
CDRCRD

RC � RD

�
A1t4 � A2t3

A1 � A2

(24)

t1�
�

1

t4

�
1

t3

�
1

tO

��1

(25)

t2�
RSCMtO

VOt1

(VO� iSSRS) (26)

Now, from the expression of t3, the model parameter
CD can be expressed as

C�1
D �R2

CCMj

where

j�
�

1

tOt1

�
1

t3

�
1

t4

�
1

t3

��
(27)

The relation between RC and RD can be found from Eq.

(13) and Eq. (22) as

RD

RC � RD

�RC

�
CM

t1

�
1

RS

�
1

RTOT � RS

�
(28)

We have shown the derivations of a two-compartment

model based on DC measurements. Our objective is to
express the model unknowns (RS, RM, RC, RD

¯
, CM, CD)

in terms of the known parameters (iSS, t3, t4, A1, A2) of

the experimentally recorded current (Eq. (20)). We are

able to extract some parameters (RS, RTOT, CM, to, t1,

t2) in this process, but the other model unknowns (RC,

RD, RM, CD) may only be expressed in terms of some

interdependent equations. In the next section, we will

continue with our derivations for the parameter-extrac-
tion of a two-compartment model, to express the ‘still-

unknown’ model parameters in the form of independent

equations.
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4. Comparison with previous work

In our derivations until now, we have avoided making

simplifying assumptions or approximations regarding
the relative sizes of the circuit components. At this

point, it is interesting to review the previous work on the

two-compartment modeling. In these works, simplifying

assumptions are made, which provides a unique solution

to the equivalent circuit model based on DC measure-

ments. If we apply these assumptions to our general set

of equations, then our equations reduce to previous

reported work.
Llano et al. (1991) uses the assumption of RM�/�,

RD�/�/RC, RS and CD�/�/CM for modeling the

currents of Purkinje cells. This simplifying assumption

works well for determining the passive properties of

Purkinje neurons. As will be shown below, the results in

the reference (Llano et al., 1991) can be obtained from

the general set of equations we have already derived for

the two-compartment model. If we use the above
assumption, then Eq. (13), Eq. (15) and Eq. (16) yield

tO�CDRC;
1

t1

�
1

t4

�
1

CM

�
1

RC

�
1

RS

�
;

t2�t3�CD(RC�RS)

(29)

Inserting Eq. (29) into Eq. (19) provides

V1(t)�VO

�
1�

RS

RC � RS

exp

�
�

t

t3

�

�
RC

RC � RS

exp

�
�

t

t4

��
(30)

Comparing Eq. (23) with Eq. (31) gives

A1�
VO

RC � RS

and A2�
VORC

R2
S � RSRC

(31)

Eq. (29) and Eq. (31) are sufficient to extract the model

parameters as

CD�
t3A1

VO

CM�
t4(A1 � A2)2

A2VO

RS�
VO

A1 � A2

RC�
A2VO

A1(A1 � A2)

(32)

The results obtained by Llano et al. (1991) are the

same as those shown in Eq. (32). Computer simulations

are performed on a two-compartment model with the

assumption that RD�/�/RS, RC; RM�/� and CD�/�/

CM and the results are shown in Fig. 4. A 10 mV

command potential is applied as the voltage stimulus

VO. Fig. 4(A) shows the effect of series resistance

compensation on the capacitive transient of the current
i1(t ). The model parameters chosen are CM�/5 pF,

CD�/100 pF, RC�/30 MV and RS�/5, 10 and 15 MV.

From Eq. (31), we see the amplitude of A2 (fast) is RC/

RS times the amplitude of A1 (slow). As the ratio of RC/

RS is increased, the amplitude of A2 also increases

(evident from Fig. 4A). The amplitude of A1, on the

other hand, does not change significantly. Increasing the

series resistance compensation decreases both the fast

(t4) and the slow (t3) time constants. Fig. 4(B) shows the

effect of varying RC on the capacitive transient of the

current i1(t) under the same assumption. The model

parameters chosen are CM�/5 pF, CD�/100 pF, RS�/

10 MV and RC�/10, 30 and 60 MV. In this case also,

decreasing the value of RC decreases both the fast (t4)

and the slow (t3) time constants. However, the value of

i1(0) is constant for varying values of RC.

Mennerick et al. (1995) use the assumption RD�/�/

RM for modeling the passive properties of hippocampal

Fig. 4. (A) The effect of series resistance compensation on the

capacitive transient of the current i1(t ) under the assumption RD�/

�/RS, RC; RM�/� and CD�/�/CM. A 10 mV command potential

was applied as the voltage stimulus VO. The model parameters chosen

are CM�/5 pF, CD�/100 pF, RC�/30 MV and RS�/5, 10 and 15 MV.

The fitting parameters for the biexponential decay of the capacitive

transients are (a) for RS�/5 MV, t3�/3.5 ms, t4�/21.4 ms, A1�/0.28

nA, A2�/1.7 nA; (b) for RS�/10 MV, t3�/4 ms, t4�/37.5 ms, A1�/

0.25 nA, A2�/0.75 nA; (c) for RS�/15 MV, t3�/4.5 ms, t4�/50 ms,

A1�/0.22 nA, A2�/0.44 nA. (B) The effect of varying RC on the

capacitive transient of the current i1(t ) under the same assumption.

The model parameters chosen are CM�/5 pF, CD�/100 pF, RS�/10

MV and RC�/10, 30 and 60 MV. The fitting parameters for the

biexponential decay of the capacitive transients are (a) for RC�/10

MV, t3�/2 ms, t4�/25 ms, A1�/0.5 nA, A2�/0.5 nA; (b) for RC�/30

MV, t3�/4 ms, t4�/37.5 ms, A1�/0.25 nA, A2�/0.75 nA; (c) for RC�/

60 MV, t3�/7 ms, t4�/43 ms, A1�/0.14 nA, A2�/0.86 nA.

S. Pandey, M.H. White / Journal of Neuroscience Methods 120 (2002) 131�/143 137



neurons. Single-exponential fits are usually inadequate

to describe the decay of current transients from these

hippocampal neurons, but biexponential decays pro-

vided an adequate description of the data. The biexpo-
nential decay of capacitive transients indicates the

passive membrane properties may be described ade-

quately with a two-compartment equivalent circuit

model. As shown below, with this assumption in our

general set of equations, we obtain the same results as

reported in the literature (Mennerick et al., 1995).

From Eq. (13) and Eq. (24) we have

tO�RCCD�
A1t4 � A2t3

A1 � A2

(33)

and with Eq. (21) and Eq. (22),

RS�
VO

A1 � A2 � iSS

;
1

RM

�
iSS(A1 � A2 � iSS)

VO(A1 � A2)
;

CM�
t3t4(A1 � A2 � iSS)2

VO(A1t4 � A2t3)

(34)

Also, with Eq. (28) and Eq. (34),

RC�
(A1 � A2)(A1t4 � A2t3)2VO

A1A2(A1 � A2 � iSS)2(t4 � t3)2
and

CD�
�

1

RC

�
A1t4 � A2t3

A1 � A2

(35)

5. Two-compartment model (admittance measurements)

A common method for measuring changes in mem-

brane capacitances of small cells utilizes a sinusoidal

voltage stimulus. The membrane capacitance is mea-

sured as a function of the real and imaginary admittance
of the cell for the case of a single-compartment model.

In this instance, this scheme is extended for a two-

compartment model to help extract the remaining model

parameters. If the AC admittance of the two-compart-

ment model is YTOT(v )�/1/ZTOT(v)�/a (v )�/jb (v),

then from Fig. 3 we have

1

ZTOT(v) � RS

�
1

RM

� jvCM�
1 � jvCDRD

RC � RD � jvCDRCRD

(36)

which can be written as

fa� RS(a2 � b2)g� jb

f(1 � aRS)2 � (bRS)2g

�
1

RM

� jvCM�
RC � jvtO(RC � RD)

RC(RC � RD)(1 � jvtO)
(37)

Equating the real parts of the Eq. (37) and using Eq.

(13), we find

1

(RC � RD)(1 � v2t2
O)

�
1

RC(1 � v2t2
O)
�

1

RS

�
CM

t1

�
fa� RS(a2 � b2)g

f(1 � aRS)2 � (bRS)2g
(38)

Inserting Eq. (13), Eq. (27) and Eq. (38) into Eq. (28)
gives

�
1

RC

�(1�v2t2
O)

�
�

1

RS

�
CM

t1

�
fa� RS(a2 � b2)g

f(1 � aRS)2 � (bRS)2g

��

�
�

1

tOCMRCj
�1

��
CM

t1

�
1

RS

�
1

RTOT � RS

�
(39)

From Eq. (39), RC can be expressed as

1

RC

�

��
(1 � v2t2

O)fa� RS(a2 � b2)g
f(1 � aRS)2 � (bRS)2g

�
� v2t2

O

�
CM

t1

�
1

RS

�
�

1

RTOT � RS

�
�

1

tOCMj

�
CM

t1

�
1

RS

�
1

RTOT � RS

�
� 1

� (40)

And from the expression C�1
D �R2

CCMj; we have

1

CD

�

� �
1

tO

ffiffiffiffiffiffiffiffiffiffi
CMj

p
�

CM

t1

�
1

RS

�
1

RTOT � RS

�
�

ffiffiffiffiffiffiffiffiffiffi
CMj

p �
�

(1 � v2t2
O)fa� RS(a2 � b2)g

f(1 � aRS)2 � (bRS)2g

�
� v2t2

O

�
CM

t1

�
1

RS

�
�

1

RTOT � RS

�2

(41)
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Finally, we have

1

RD

�
1

RC

�
1

RCCMjtO

�1

�
and

1

RM

�
1

RTOT � RS

�
1

RC � RD

(42)

From the results obtained in previous sections, all the

six two-compartment model parameters (RC, RD, RM,

RS, CM, CD) are independently expressed in terms of the

known parameters (iSS, t3, t4, A1, A2) of the current i1(t)

expression (Eq. (20)) and the known parameters (a (v ),
b (v ), v ) of the admittance measurements. A flowchart

summarizing the steps for the extraction of the model

parameters is shown at the end of the next section as

Fig. 11. Such an algorithm can be easily implemented in

software, which takes (as input) the DC and AC

measurement results and gives (as output) the values

of the model parameters.

6. Two-compartment model (simulation results)

Computer simulations of the two-compartment

model, based on our general parameter-extraction

method, were performed on XSPICE. The effect of

varying the series resistance compensation on the two-

compartment model current response is shown in Fig. 5.

The model parameters chosen are CM�/25 pF, CD�/25

pF, RC�/20 MV, RM�/RD�/200 MV and RS�/1, 5 and
10 MV. Fig. 5(A) shows the effect of series resistance

compensation on the capacitive transient of the current

i1(t) in a two-compartment model. From RS�/1 MV to

Fig. 5. (A) The effect of series resistance compensation on the

capacitive transient of the current i1(t ) in a two-compartment model

(with no approximations). The model parameters chosen are CM�/25

pF, CD�/25 pF, RC�/20 MV, RM�/RD�/200 MV and RS�/1, 5 and

10 MV. The fitting parameters for the biexponential decay of the

capacitive transients are (a) for RS�/1 MV, t3�/0.5 ms, t4�/21.5 ms,

A1�/0.94 nA, A2�/9 nA, iSS�/0.095 nA; (b) for RS�/5 MV, t3�/0.67

ms, t4�/72 ms, A1�/0.7 nA, A2�/1.2 nA, iSS�/0.091 nA; (c) for RS�/

10 MV, t3�/0.87 ms, t4�/104 ms, A1�/0.5 nA, A2�/0.42 nA, iSS�/

0.087 nA. (B) Plots the various values of tO, t1, t2, t3 and t4 (as defined

by Eqs. (13)�/(16)) as a function of the series resistance compensation.

The model parameters are chosen as CM�/25 pF, CD�/25 pF, RC�/20

MV and RM�/RD�/200 MV. The range of the values of the other

fitting parameters are A1�/0.5�/0.94 nA, A2�/0.42�/9.0 nA, iSS�/

0.087�/0.095 nA.

Fig. 6. (A) The effect of varying RC on the capacitive transient of the

current i1(t ) in a two-compartment model (with no approximations).

The model parameters chosen are CM�/25 pF, CD�/25 pF, RS�/5

MV, RM�/RD�/200 MV and RC�/2, 20 and 100 MV. The fitting

parameters for the biexponential decay of the capacitive transients are

(a) for RC�/2 MV, t3�/0.3 ms, t4�/19.3 ms, A1�/1.7 nA, A2�/0.22

nA, iSS�/0.095 nA; (b) for RC�/20 MV, t3�/0.67 ms, t4�/72 ms, A1�/

0.69 nA, A2�/1.22 nA, iSS�/0.09 nA; (c) for RC�/100 MV, t3�/1.84

ms, t4�/103 ms, A1�/0.19 nA, A2�/1.73 nA, iSS�/0.08 nA. (B) Plots

the various values of tO, t1, t2, t3 and t4 (as defined by Eqs. (13)�/(16))

as a function of RC. The model parameters are chosen as CM�/25 pF,

CD�/25 pF, RS�/5 MV and RM�/RD�/200 MV. The range of the

values of the other fitting parameters A1�/0.12�/1.7 nA, A2�/0.22�/1.8

nA, iSS�/0.073�/0.095 nA.
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RS�/10 MV, the increase in t3 (slow) is not so

significant (0.5�/0.87 ms) compared to the increase in

t4 (fast) (21.5�/104 ms). Also, the value of i1(0) is very

sensitive to changes in RS. Fig. 5(B) plots the various

values of tO, t1, t2, t3 and t4 (as defined by Eqs. (13)�/

(16)) as a function of the series resistance compensation.

According to Eq. (13), tO is relatively independent of

RS, as shown in Fig. 5. It should be noted here that fast

exponential decay time constant of the capacitive

transient is t4, while the slow exponential decay time

constant is t3. The variables t1 (fast) and t2 (slow)

represent the two time constants for a two-compartment

model under the approximation of RM�/�, RD�/�/

RC, RS and CD�/�/CM (Llano et al., 1991). As seen

in Fig. 5(B), the time constants t1 and t4 are close to

each other, but the difference between the time constants

t2 and t3 increases with increasing values of RS. This

shows the limitation of using an approximated two-

compartment model with a high series resistance. In
addition, the difference between the time constants t2

and t3 increases with an increasing value of the

connecting resistance RC. Finally, both time constants

of the general two-compartment model, t3 and t4,

depend and change with varying values of RS. This is

in contrast to the finite-cable model, where changing RS

affects only the first, faster time constant and leaves the

slower one unchanged.
Fig. 6 shows the effect of varying RC on the current

response of a two-compartment model. Fig. 6(A) shows

the effect of varying RC on the capacitive transient of the

current i1(t). The model parameters chosen are CM�/25

Fig. 7. (A) The effect of varying RD on the capacitive transient of the

current i1(t ) in a two-compartment model (with no approximations).

The model parameters chosen are CM�/25 pF, CD�/25 pF, RS�/5

MV, RM�/200 MV, RC�/20 MV and RD�/20, 100 and 400 MV. The

fitting parameters for the biexponential decay of the capacitive

transients are (a) for RD�/20 MV, t3�/0.39 ms, t4�/60 ms, A1�/

0.725 nA, A2�/1.02 nA, iSS�/0.26 nA; (b) for RD�/100 MV, t3�/

0.615 ms, t4�/70.3 ms, A1�/0.68 nA, A2�/1.2 nA, iSS�/0.125 nA; (c)

for RD�/400 MV, t3�/0.71 ms, t4�/73 ms, A1�/0.7 nA, A2�/1.23 nA,

iSS�/0.07 nA. (B) Plots the various values of tO, t1, t2, t3 and t4 (as

defined by Eqs. (13)�/(16)) as a function of RD. The model parameters

are chosen as CM�/25 pF, CD�/25 pF, RS�/5 MV and RM�/200

MV. The range of the values of the other fitting parameters A1�/0.7�/

0.76 nA, A2�/0.95�/1.23 nA, iSS�/0.07�/0.3 nA.

Fig. 8. (A) The effect of varying RM on the capacitive transient of the

current i1(t ) in a two-compartment model (with no approximations).

The model parameters chosen are CM�/25 pF, CD�/25 pF, RS�/5

MV, RD�/200 MV, RC�/20 MV and RM�/10, 50 and 200 MV. The

fitting parameters for the biexponential decay of the capacitive

transients are (a) for RM�/10 MV, t3�/0.6 ms, t4�/56 ms, A1�/0.46

nA, A2�/1.05 nA, iSS�/0.7 nA; (b) for RM�/50 MV, t3�/0.66 ms,

t4�/69 ms, A1�/0.62 nA, A2�/1.2 nA, iSS�/0.22 nA; (c) for RM�/200

MV, t3�/0.67 ms, t4�/72 ms, A1�/0.7 nA, A2�/1.22 nA, iSS�/0.09

nA. (B) Plots the various values of tO, t1, t2, t3 and t4 (as defined by

Eqs. (13)�/(16)) as a function of RM. The model parameters are chosen

as CM�/25 pF, CD�/25 pF, RS�/5 MV and RD�/200 MV. The range

of the values of the other fitting parameters A1�/0.44�/0.71 nA, A2�/

1.03�/1.23 nA, iSS�/0.07�/0.53 nA.
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pF, CD�/25 pF, RS�/5 MV, RM�/RD�/200 MV and

RC�/2, 20 and 100 MV. Fig. 6(B) plots the various

values of tO, t1, t2, t3 and t4 (as defined by Eqs. (13)�/

(16)) as a function of RC. The model parameters chosen

in this case are the same as those for Fig. 6(A). From

both the plots, the slow time constant t3 is very sensitive

to increases in the value of RC, whereas the other time

constant t4 is relatively constant with any changes in the

value of RC. Also, the difference between t2 and t3

becomes smaller with increasing values of RC. This

shows that the approximation of CM�/0 by Nadeau and

Lester (2000) is valid only for larger values of RC where

the difference between the two time constants, t3 and t4,

is large.

Fig. 7 shows the effect of varying RD on the current

response of a two-compartment model. The model

parameters chosen are CM�/25 pF, CD�/25 pF, RS�/5

MV, RM�/200 MV, RC�/20 MV and RD�/20, 100 and

400 MV. Fig. 7(A) shows the effect of varying RD on the

capacitive transient of the current i1(t). Fig. 7(B) plots
the various values of tO, t1, t2, t3 and t4 as a function of

RD, choosing the same values of the model parameters.

Similar to Fig. 6, we see a strong dependence of the slow

time constant t3 on the varying values of RD, while the

fast time constant t4 is relatively independent of such

changes in RD. The difference between t2 and t3 is more

pronounced for smaller values of RC.

Fig. 8 shows the effect of varying RM on the current
response of a two-compartment model. The model

parameters chosen are CM�/25 pF, CD�/25 pF, RS�/

5 MV, RD�/200 MV, RC�/20 MV and RM�/10, 50 and

200 MV. Fig. 8(A) shows how the capacitive transient of

Fig. 9. (A) The effect of varying CM on the capacitive transient of the

current i1(t ) in a two-compartment model (with no approximations).

The model parameters chosen are CD�/25 pF, RS�/5 MV, RM�/

RD�/200 MV, RC�/20 MV and CM�/5, 25 and 100 pF. The fitting

parameters for the biexponential decay of the capacitive transients are

(a) for CM�/5 pF, t3�/0.6 ms, t4�/18 ms, A1�/0.42 nA, A2�/1.5 nA,

iSS�/0.09 nA; (b) for CM�/25 pF, t3�/0.67 ms, t4�/72 ms, A1�/0.7

nA, A2�/1.22 nA, iSS�/0.09 nA; (c) for CM�/100 pF, t3�/1.03 ms,

t4�/175 ms, A1�/1.3 nA, A2�/0.63 nA, iSS�/0.09 nA. (B) Plots the

various values of tO, t1, t2, t3 and t4 (as defined by Eqs. (13)�/(16)) as a

function of CM. The model parameters are chosen as CD�/25 pF,

RS�/5 MV and RM�/RD�/200 MV. The range of the values of the

other fitting parameters are A1�/0.42�/1.6 nA, A2�/0.35�/1.5 nA,

iSS�/0.09 nA.

Fig. 10. (A) The effect of varying CD on the capacitive transient of the

current i1(t ) in a two-compartment model (with no approximations).

The model parameters chosen are CM�/25 pF, RS�/5 MV, RM�/

RD�/200 MV, RC�/20 MV and CD�/5, 25 and 100 pF. The fitting

parameters for the biexponential decay of the capacitive transients are

(a) for CD�/5 pF, t3�/0.23 ms, t4�/39 ms, A1�/1.4 nA, A2�/0.52 nA,

iSS�/0.09 nA; (b) for CD�/25 pF, t3�/0.67 ms, t4�/72 ms, A1�/0.7

nA, A2�/1.22 nA, iSS�/0.09 nA; (c) for CD�/100 pF, t3�/2.33 ms,

t4�/90 ms, A1�/0.44 nA, A2�/1.47 nA, iSS�/0.09 nA. (B) Plots the

various values of tO, t1, t2, t3 and t4 (as defined by Eqs. (13)�/(16)) as a

function of CD. The model parameters are chosen as CM�/25 pF,

RS�/5 MV, RM�/RD�/200 MV and RC�/20 MV. The range of the

values of the other fitting parameters are A1�/0.39�/1.39 nA, A2�/

0.52�/1.52 nA, iSS�/0.09 nA.
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the current i1(t) varies with changing RM. Fig. 8(B) plots

the various values of tO, t1, t2, t3 and t4 as a function of

RM, choosing the same values of the model parameters.

As seen in Fig. 8, the time constants t1, t2, t3 and t4

exhibit less dependence on the varying values of RM.

Yet, there is significant difference between the curves of

t2 and t3, suggesting that for relatively smaller values of

RC, the more accurate time constant (slow) is t3 and not

t2 (which is the slow time constant under the approx-

imation made by Llano et al. (1991)).

Fig. 9 shows the effect of varying CM on the current

response of a two-compartment model. The model

parameters chosen are CD�/25 pF, RS�/5 MV, RM�/

RD�/200 MV, RC�/20 MV and CM�/5, 25 and 100 pF.

Fig. 9(A) shows the effect of varying CM on the

capacitive transient of the current i1(t ). Fig. 9(B) plots

the various values of tO, t1, t2, t3 and t4 as a function of

CM, choosing the same values of the model parameters.

As seen in Fig. 9, both the time constants t3 and t4 vary

with changing values of CM; the dependence of the slow

time constant t3 on such changes being much more

significant. The curve of t2 is relatively independent of

varying CM because it was the slow time constant for the

case where CM�/0 in a two-compartment model (Llano

et al., 1991; Nadeau and Lester, 2000). In this case, there

is noticeable error involved in the computation of the

time constants if approximations are made in the two-
compartment model. This error becomes more and more

significant as the value of CM increases.

Fig. 10 shows the effect of varying CD on the current

response of a two-compartment model. The model

parameters chosen are CM�/25 pF, RS�/5 MV, RM�/

RD�/200 MV, RC�/20 MV and CD�/5, 25 and 100 pF.

Fig. 10(A) shows the effect of varying CD on the

capacitive transient of the current i1(t). Fig. 10(B) plots
the various values of tO, t1, t2, t3 and t4 as a function of

CD, choosing the same values of the model parameters.

As seen from Fig. 10, the fast time constant t4 is

relatively constant with changing values of CD, while the

slow time constant t3 shows a sharp, linear increase with

increasing values of CD. The curves of t2 and t3 follow

each other closely and so does the curves of t1 and t4. As

such, making an approximation about the relative size
of CD does not introduce any significant error in the

computation of the time constants.

7. Conclusion

In summary, we have derived a general solution for

the parameter-estimation of a two-compartment model.

With simplifying approximations, used by previous

authors, our derivations are consistent with their results.

The computer simulation results of the general two-

compartment model give valuable insight into the role of
each model parameter in the current response of such an

equivalent circuit. We have compared the various time

constants (those from approximated models and those

from our general model) under the effects of varying

model parameters. The difference between the time

constants (related to the approximated models and our

general model) increases with decreasing values of the

connecting resistance RC. As seen from the simulations,
each of the model parameters has a unique effect on the

variation of the different time constants. Employing an

approximated model may not reveal the exact values of

the model parameters, which are calculated from these

time constants. The general method for the extraction of

parameters is not limited by any simplifying approxima-

tions and so gives an exact solution of the two-

compartment model.
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